
Data Formulator 2: Iterative Creation of Data Visualizations, with
AI Transforming Data Along the Way

Chenglong Wang
chenglong.wang@microsoft.com

Microsoft Research
Redmond, Washington, USA

Bongshin Lee
b.lee@yonsei.ac.kr
Yonsei University

Seoul, Korea

Steven Drucker
sdrucker@microsoft.com

Microsoft Research
Redmond, Washington, USA

Dan Marshall
danmar@microsoft.com

Microsoft Research
Redmond, Washington, USA

Jianfeng Gao
jfgao@microsoft.com
Microsoft Research

Redmond, Washington, USA

Figure 1: With Data Formulator 2, analysts can iterate on a previous design by (1) selecting a chart from data threads and (2)

providing combined natural language and graphical user interface inputs in the chart builder to specify the new design. The AI

model generates code to transform the data and update the chart. Data threads are updated with new charts for future use.

Abstract

Data analysts often need to iterate between data transformations
and chart designs to create rich visualizations for exploratory data
analysis. AlthoughmanyAI-powered systems have been introduced
to reduce the effort of visualization authoring, existing systems are
not well suited for iterative authoring. They typically require an-
alysts to provide, in a single turn, a text-only prompt that fully
describe a complex visualization. We introduce Data Formulator
2 (Df2 for short), an AI-powered visualization system designed to
overcome this limitation. Df2 blends graphical user interfaces and
natural language inputs to enable users to convey their intent more
effectively, while delegating data transformation to AI. Further-
more, to support efficient iteration, Df2 lets users navigate their
iteration history and reuse previous designs, eliminating the need

CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in CHI Conference
on Human Factors in Computing Systems (CHI ’25), April 26-May 1, 2025, Yokohama,
Japan, https://doi.org/10.1145/3706598.3713296.

to start from scratch each time. A user study with eight participants
demonstrated that Df2 allowed participants to develop their own
iteration styles to complete challenging data exploration sessions.

CCS Concepts

• Human-centered computing→ Visualization systems and

tools; • Computing methodologies→ Artificial intelligence.

ACM Reference Format:

Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jian-
feng Gao. 2025. Data Formulator 2: Iterative Creation of Data Visualizations,
with AI Transforming Data Along theWay. In CHI Conference on Human Fac-
tors in Computing Systems (CHI ’25), April 26-May 1, 2025, Yokohama, Japan.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3706598.3713296

1 Introduction

In data exploration [47], even when starting with an initial idea, an-
alysts often need to go back and forth exploring a variety of charts
before reaching their goals. Throughout this iterative process, an-
alysts often discover insights that lead them into new directions.
However, analysts need to tackle numerous execution challenges:

ar
X

iv
:2

40
8.

16
11

9v
2

 [
cs

.H
C

]
 2

1
Fe

b
20

25

https://doi.org/10.1145/3706598.3713296
https://doi.org/10.1145/3706598.3713296

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

in addition to varying chart specifications (as many current tools
facilitate), they need to perform and manage different data transfor-
mations to support the desired visualization designs. For example,
when exploring renewable energy trends, an analyst may find that
similar trends across countries make a simple line chart (Figure 1)
too dense for detailed comparisons. This observation prompts the
analyst to explore the renewable percentage trends of the top 5 CO2
emitters and how the rankings of these countries have changed
over time. To execute the plan, the analyst needs different data
transformations: the first requires filtering the data based on each
country’s total CO2 emissions, and the second requires partitioning
the data by year to compute each country’s ranking for that year.

Because data transformation can be difficult to learn and execute,
many AI-powered tools have been developed [2, 10, 31, 36, 57,
58]. These tools allow users to describe their goals using natural
language and leverage AI models’ code generation capabilities [1,
5] to streamline data transformation and chart creation. Despite
their success, current tools do not perform well in the iterative
visualization authoring context. Most of them require analysts to
provide, in a single turn, a text-only prompt that fully describes
the complex visualization task to be performed, which is usually
unrealistic for both users and models.

• First, even though free-form text prompts provide unbounded
expressiveness for users to describe their goals, they miss UI
interactions’ precision and affordances, making it difficult for
users to clearly describe complex chart designs. For example,
to fully elaborate a faceted bar chart design, the user needs a
verbose prompt to clearly specify visual encodings; without it, AI
models often misinterpret the intent and create undesired charts,
thus requiring further disambiguation efforts from the user. In
fact, writing high-quality prompts requires skill and effort. Even
with clear goals, inexperienced users sometimes find it difficult
to clearly describe their intent in texts [52, 69].

• Second, existing AI-powered tools do not accommodate branch-
ing or backtracking, behaviors that commonly occur in the it-
erative authoring process. Using single-turn text-to-vis tools
iteratively requires users to re-specify their intent from scratch
for each new design, even for minor updates. This also increases
the likelihood of the AI model failing, as it must solve a complex
task in a single attempt. While chat-based tools [31, 39, 72] sup-
port multi-turn interactions by reusing previous outputs, they
struggle with branching contexts. Users often find it difficult to
clearly specify which previous messages are relevant for the next
iteration. With poorly specified contexts, models may struggle at
retrieving important information from the lengthy conversation
history to complete the task [17, 26, 70].

To address these iterative chart authoring challenges, our first
key insight is to design a multi-modal chart builder that blends
the shelf-configuration UI [45, 58] with natural language (NL) input
to enhance users’ ability to structurally specify their chart designs.
Resembling traditional shelf-configuration UIs, the chart builder lets
user drag existing fields to corresponding visual channels to specify
visual encodings. Additionally, users can type in field names that
do not exist in the current data to express their intent for creating
a visualization that requires data transformation. Coupled with
a brief supplemental NL text that elaborates the design, the user

can effectively communicate their goal to AI. Since the system can
precisely extract chart configuration from the encoding shelf, the
user doesn’t need a verbose prompt to explicitly explain the design.
The AI model then leverages the combined inputs to generate data
transformation code to prepare the data required for the chart.

Our second key insight is to introduce data threads for users to
steer iteration directions. Data threads represent user’s non-linear
authoring history, allowing users to navigate to an earlier result,
fork a new branch, and ask AI to create charts based on that context.
This reduces users’ input overhead by allowing them to specify
incremental updates from a previous result (e.g., “show only top 5
CO2 emission countries’ trends”, Figure 1) rather than re-describing
the full chart design from scratch. This design also benefits the AI
models: the model can reuse previously generated code for new
tasks to avoid repeating past mistakes, and it remains free from
distractions caused by irrelevant messages from other threads. Data
threads also provide a shortcut for users to backtrack and revise
prompts to update recently created charts, allowing them to quickly
clarify ambiguous inputs or fix errors made by AI.

Based on these designs, we developed Data Formulator 2 (Df2 for
short), an AI-powered visualization tool for iterative visualization
authoring. 1 Df2 supports diverse charts powered by the Vega-Lite
grammar [49], and the AI model can flexibly transform data for
different designs, supporting operators like reshaping, filtering, ag-
gregation, window functions, and column derivation. Like other
AI tools [10, 58], Df2 provides users with panels to view gener-
ated data, transformation code and code explanations to inspect
AI-generated contents. To understand how our new interaction
designs benefit analysts in solving challenging data visualizations
tasks, we conducted a user study consisting of eight participants
with varying levels of data science expertise. They were asked to
reproduce two professional data scientists’ analysis sessions to cre-
ate a total of 16 visualizations, 12 of which require non-trivial data
transformations (e.g., rank categories by a criterion and combine
low-ranked ones into one category with the label, “Others”). The
study shows that participants can quickly learn to use Df2 to solve
these complex tasks, and the tool’s flexibility and expressiveness
allow participants to develop their own iteration, verification, and
error correction styles to complete the tasks. Our inductive analysis
of study sessions reveals interesting patterns of how users’ expe-
riences and expectations about the AI system affected their work
styles. In summary, our main contributions are as follows:
• We designed new interaction approaches, specifically a multi-
modal chart builder and a data threads view, to enhance users’
ability to specify chart designs and control iteration directions.

• We implemented these designs in Df2, an AI-powered interactive
tool that supports the iterative creation of visualizations requiring
data transformations.

• We conducted a user study that discovered data analysts’ different
iteration styles and rich experiences using our new interaction
approaches to complete iterative chart authoring tasks. We ob-
served that analysts developed different styles iterating with the
AI to perform data analysis, reflecting their personal experience
and expectation with the AI model.

1Data Formulator 2 is open sourced at https://github.com/microsoft/data-formulator

https://github.com/microsoft/data-formulator

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 2: An analyst explores electricity from different energy sources, renewable percentage trends, and country rankings by

renewable percentages using a dataset on CO2 and electricity for 20 countries (2000-2020, table 1). The analyst creates five data

versions in three branches to support different chart designs. Df2 allows users to manage iteration directions and create rich

visualizations using a blended UI and natural language inputs.

2 Illustrative Scenarios

In this section, we describe scenarios to illustrate users’ experiences
for creating a series of visualizations to explore global sustainabil-
ity from a dataset of 20 countries’ energy generation from 2000
to 2020. The initial dataset, shown in Figure 2- 1○, includes each
country’s energy produced from three sources (fossil fuel, renew-
ables, and nuclear) each year and annual CO2 emission value (the
CO2 emission data only ranges from 2000 to 2019). We compare
different experiences and skills required for a data analyst, Megan,
to complete the analysis session shown in Figure 2 with different
tools, computational notebooks versus Df2.

Exploration with computational notebooks. To complete the
analysis in a computation notebook, Megan can use R libraries
ggplot2 and tidyverse. To use ggplot2 to create charts, Megan needs
to make sure that all data fields to be visualized on visual channels
(e.g., 𝑥,𝑦-axes, color, facet) are columns in the input data, thus,
Megan uses tidyverse to transform data when needed.

Figure 2 shows Megan’s data analysis session with three
branches. She starts with two basic line charts (chart 1○-A,B) show-
ing renewable energy and CO2 emission trends. Megan observes
that many countries’ CO2 emissions have increased despite in-
creased renewable energy use, prompting her to create a faceted
line chart (chart 2○) and visualize renewable energy percentage
trends (chart 3○). Discovering that renewable percentage is a bet-
ter indicator for global sustainability trends, Megan explores two
directions: creating a line chart of countries’ renewable percentage
ranks (chart 4○) and highlighting the top 5 CO2 emitters’ trends
(chart 5○) compared to global median values (chart 6○). Throughout
the process, Megan backtracks several times to fork new branches
from a previous version of data (e.g., charts 2○ to 3○, and 4○ to 5○)
and reuses existing results to create new charts (e.g., chart 6○ from
5○).
Implementing these charts requires considerable data prepara-

tion efforts. While basic charts can be created by mapping existing

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

Figure 3: Df2 overview. Users create visualizations by providing fields (drag-and-drop or type) and NL instructions to the Chart

Builder, delegating data transformation to AI. Data View shows derived data. Users navigate data history and select contexts

for the next iteration using (the thread in use is displayed as local data threads). They refine or create new charts by providing

instructions in Chart Builder. The main panel provides pop-up windows to inspect code, explanations, and chat history.

data fields to visual channels (e.g., Year→ 𝑥 , Electricity from renewables

(Twh)→ 𝑦, Entity→color for chart 1○-A), more complex charts (3○- 6○)
require different data transformations. For example, Megan needs
to reshape the table with pivot_longer to merge energy sources into
a new field Electricity for the 𝑦-axis (chart 2○); to rank countries by
renewable percentage (chart 4○), she partitions the data by year
and uses rank; for charts 5○ and 6○, she computes the global median
using aggregation and merges the results with the previous table
to surface all necessary fields.

Exploration with Df2. Using Df2 to complete the same analysis
session, Megan’s experience is quite different. Instead of transform-
ing data and creating visualizations with code, Megan’s main task
is to describe visualization goals with UI interactions and NL inputs
and ask the AI model to realize them.

Megan starts with basic line charts to visualize trends of electric-
ity from renewables (Figure 2- 1○A). Since all three required fields
are available from the input data, Megan simply selects the chart
type “line chart” in the encoding shelf and drags and drops fields to
their corresponding visual channels (Figure 4- 1○). Df2 then gener-
ates the desired visualization. To visualize the CO2 emission trends,
Megan swaps the 𝑦-axis encoding with CO2 emissions (kt)→ 𝑦.

Megan now needs to create the faceted line chart to compare elec-
tricity from all energy sources, which requires new fields Electricity

and Energy Source. WithDf2, Megan can specify the chart using new
data fields and NL instructions in the chart builder (Figure 3-2) and
ask the AI to transform the data. As Figure 4- 2○ shows, Megan first
drags and drops existing fields Year and Entity to the 𝑥-axis and color,

respectively. Then, she types in the names of new fields Electricity

and Energy Source in the 𝑦-axis and column, respectively, to indicate
to the AI agent that she expects two new fields to be derived for
these properties. Finally, Megan provides an instruction, “compare
electricity from all three sources,” to further clarify the intent and
clicks the formulate button. To create the chart, Df2 first generates
a Vega-Lite spec skeleton from the encoding (to be completed based
on information from the transformed data). It then summarizes the
data, encodings, and NL instructions into a prompt to ask an AI
model to generate data transformation code to prepare the data
that fulfills all necessary fields, which is then used to instantiate
the chart skeleton. After reviewing the generated chart and data,
Megan is satisfied and moves to the next task.Df2 also updates data
threads (Figure 3- 5○) with the newly derived data and chart. With
data threads, Megan can switch the iteration contexts to instruct
the AI model to create a new chart either from scratch or reusing a
previous result.

Megan proceeds to visualize renewable energy percentage. Al-
though it requires a different data transformation, Megan’s experi-
ence is similar to the previous one: she drags-and-drops Year and
Entity to 𝑥-axis and color (Figure 4- 3○), and enters the name of the
new field “Renewable Energy Percentage” on the 𝑦-axis. Since Megan
believes the field names are self-explanatory, she formulates the
new data without an additional NL instruction. Df2 generates the
desired visualization (Figure 5- 1○). To visualize the countries’ re-
newable percentage ranks, building on the previous data, Megan

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 4: Experiences with Df2: (1) creating the basic renewable energy chart using drag-and-drop to encode fields; (2 and 3)

creating charts requiring new fields by providing field names and optional natural language instructions to derive new data.

Figure 5: Iteration with Df2: (1) provide an instruction to filter the renewable energy percentage chart by top CO2 countries, (2)
update the chart with Global Median? and instruct Df2 to add the global median alongside the top 5 CO2 countries’ trends, and (3)

move Global Median? from column to opacity to update the chart design without deriving new data.

adds a new field “Rank” to the 𝑦-axis and provides a short instruc-
tion. Because Megan builds the new chart on top of the previous
data (note that in Figure 4- 3○, the chart builder box is positioned
under the previous table-42 as opposed to energy.csv), the AI model
has more contextual information to correctly derive the renewable
percentage rank (Figure 2- 4○) despite Megan’s simple inputs.

Next, to visualize the renewable percentage trends of the top five
CO2 emitting countries, Megan decides to build on a previous chart
to avoid creating a verbose prompt from scratch. Megan first uses
data threads (Figure 3- 5○) to locate renewable percentage chart and
opens it in the main panel. On top of that, Megan provides a new
instruction below the local data thread, “show only top 5 CO2 emis-
sion countries’ trends,” and clicks the “derive” button (Figure 5- 1○).
Df2 updates the previous code to include a filter clause to produce
the new data and visualization (Figure 5- 2○). Finally, to annotate the
chart with global median trends, Megan forks a branch by copying
the previous chart, as the new chart requires different encodings
(and she wants to keep both visualizations available). Megan up-
dates the visual encoding by (1) typing in a new field name Global

Median? for column and (2) providing the edit instruction “include

global median as an entity” (Figure 5- 2○). Once she clicks the derive
button,Df2 generates the new chart (Figure 5- 3○). Upon inspection,
Megan prefers to change the visualization type, with global average
rendered in a different opacity as opposed to a different subplot.
Since these two charts require the same data fields, Megan doesn’t
need to interact with the AI model — she can directly update the
design through the UI: first selecting a new chart type “custom line”
(which exposes more chart properties than the basic line chart)
and moving Global Median? to the opacity channel. With all desired
charts created, Megan concludes the analysis session. Figure 3- 3○
shows all the data threads from Megan.

Comparison of experiences. These two tools offer different ex-
periences and skill requirements for Megan to execute the analysis.
However, both enable her to iteratively refine exploration goals
and explore different branches to uncover insights.

The main difference between the two experiences is data trans-
formation. In computation notebooks, Megan needs to prepare data
for design updates, even seemingly small ones (e.g., charts- 3○ and
5○). She must understand the data shape required and apply the
correct transformations (e.g., unpivot for table 2○, join and union

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

for table 6○). Proficiency in data transformation is essential for cre-
ating rich visualizations. In Df2, Megan specifies high-level chart
designs, and the AI implements the transformations. Regardless
of the underlying data transformations, she conveys her intents
uniformly through visual encodings (UI) and natural language in-
puts. Because Megan can use the shelf-configuration UI to specify
chart design, the supplementary NL instruction is straightforward.
Though Megan doesn’t write code, Df2 provides artifacts like gen-
erated data, charts, and code with natural language explanations
for her to review. By lowering the implementation skill barrier, Df2
allows users to focus more on analysis planning and reasoning.

Computation notebooks naturally support reuse. Megan can
copy-edit previous code snippets or reuse variables to build new
charts. InDf2, Megan directs the analysis using data threads. Megan
can easily review the history and select previous results to instruct
the AI model to create new charts from those contexts. This simpli-
fies instructions to incremental updates, and the AI reuses previous
outputs to avoid mistakes. If undesired results occur, she can back-
track and revise inputs using data threads (Figure 3- 3○). Iteration
isn’t as easy with a chat-based tool. Iteration isn’t as easy with a
chat-based tool, where verbose prompts are needed to guide the AI
and avoid unrelated histories.

3 System Design

In this section, we presentDf2’s system design. First, to enable users
to specify their intent usingmultiple paradigms (shelf-configuration
UI and NL inputs) Df2 decouples chart specification from data

transformation, solving them with template instantiation and
AI code generation respectively. Second, to support reuse, Df2
organizes the iteration history as data threads with data as

first-class objects. This enables users to either locate a chart from
a different branch and follow up or quickly revise and rerun the
most recent instructions leading to the current chart. We will next
detail how we implement these designs and explain how additional
features help users understand AI-generated results.

3.1 Composing charts from multi-modal inputs

Figure 6 shows how Df2 decouples chart design and data transfor-
mation to support blended input methods. Given a user specifica-
tion, Df2 generates the desired chart in three steps: (1) generate a
Vega-Lite specification from the selected chart type, (2) compile a
prompt and delegate data transformation to the AI, and (3) instan-
tiate the Vega-Lite specification with the generated data.
Chart specification generation. Df2 adopts a chart type-based
approach to represent visualizations, supporting five categories of
charts: scatter (scatter plot, ranged dot plot), line (line chart, dotted
line chart), bar (bar chart, stacked bar chart, grouped bar chart),
statistics (histogram, heatmap, linear regression, boxplot) and cus-
tom (custom scatter, line, bar area, rectangle where all available
visual channels are exposed). Each chart type is represented as a
Vega-Lite template with a set of predefined visual channels, includ-
ing position (𝑥 , 𝑦), legends (color, size, shape, opacity), and facet
(column, row) that are shown to the user in the chart builder. For
example, a line chart is represented as a Vega-Lite template { "mark":
"line", "encoding" : { "x": null, "y": null, "color": null, "column": null,
"row": null}}, and when the user selects line chart, channels 𝑥 , 𝑦,

color, column, and row are displayed in the chart builder. Chart
type-based design enable Df2 to support predefined layered charts
(e.g., ranged dot plot composed from line and scatter, Figure 7). Ad-
ditional chart types (e.g., bullet chart) can be supported by adding
Vega-Lite templates with respective channels to the library.

As the user inputs fields into the chart builder, either by dragging
and dropping it from existing data fields or by typing in new fields
they wish to visualize, Df2 instantiates the Vega-Lite template with
provided fields. For example, as shown in Figure 6- w1 , when the user
drags Year→ 𝑥 , Entity→ 𝑦 and types Rank in𝑦, the line chart template
mentioned above is instantiated with provided fields: if the field is
available in the current data table, both field name and encoding
type are instantiated (e.g., Year with the temporal type), otherwise
the encoding type is left as a “<placeholder>” to be instantiated
later when data transformation completes. The shelf-configuration
saves users efforts from writing prompts to explain complex chart
designs. For example, to create a ranged dot plot–layered chart
composed of scatter and line charts–the user only needs to fill the
required fields in the UI. Df2 then populates corresponding fields
in the predefined chart template (Figure 7).

Data transformation with AI. From the chart builder, Df2 as-
sembles a prompt and queries an LLM to generate python code
to transform data. The data transformation prompt contains three
segments: the system prompt, the data transformation context and
the goal (illustrated Figure 6- w2).

The system prompt describes the role of the LLM and the out-
put format. Besides generic role descriptions (i.e., LLM as a data
scientist for data transformation), the system prompt guides the
LLM to solve the data transformation task in two steps. First, the
LLM should refine the user’s goal and output as a JSON object that
elaborates intermediate and final fields to be computed from the
original data. Then, the LLM should generate a python snippet
following a provided template. The system prompt ends with an
input-output example that illustrates the process. The design ra-
tionale behind the “goal refinement” step is to allow the LLM to
reason about any potential discrepancy between users’ provided
fields and their instruction (e.g., users may ask about color by en-
ergy type but didn’t put “energy type” on the color encoding) and
determine the final list of fields to be computed. Df2 then assem-
bles context prompts that illustrate the data to be transformed,
explaining the data fields by showing the data type and example
values for each field, along with sample table rows. The data con-
text provides valuable information related to data formats (such
as data types, string formats, and whether columns contain null
values) to the LLM, ensuring that the generated transformation
code is executable on the given data. When a chart is specified
based on previous results, the dialog history between Df2 and the
LLM, including user instructions and previously generated code, is
appended in context. This way, even if users’ follow-up prompts
is short, the grounded contexts help the model understand user
intent and reuse previously generated code. Finally, Df2 assembles
a goal prompt, combining the NL instruction provided in the text
box and field names used in the encodings. When users skip an NL
instruction (Figure 4- w3), the instruction part is left blank. This goal
will be refined by the LLM (i.e., based on the system prompt) before
attempting to generate the data transformation code. With the full

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 6: Df2’s workflow: (1) Df2 generates a Vega-Lite spec skeleton based on user specifications and chart type. (2) If new

fields (e.g., Rank) are required, Df2 prompts its AI model to generate data transformation code. (3) The Vega-Lite skeleton is

then instantiated with the new data to produce the desired chart.

Figure 7: Df2 converts user encodings into a Vega-Lite specification, which is combined with AI-transformed data to visualize

country ranks in 2000 and 2020.

input, Df2 prompts the LLM to generate a response. Below shows
the LLM’s refined goal for the task in Figure 6, and the generated
code is shown in Figure 6- w2 .
{"detailed_instruction": "Calculate the percentage of electricity generated

from renewables for each country per year. Then, rank the countries by
their renewable percentage for each year.",

"output_fields": ["Year", "Entity", "Renewable_Percentage", "Rank"],
"visualization_fields": ["Year", "Rank", "Entity"],
"reason": "To rank countries by their renewable percentage, we need to

calculate the renewable percentage for each country per year and then
determine the rank based on this percentage." }

Df2 then runs the code on the input data. If the code executes
without errors, the output data is used to instantiate the Vega-Lite
script generated in the previous step. This is done by first inferring
semantic types of newly generated columns (to determine their
encoding type), and then assembling the data with the script to ren-
der the visualization (Figure 6- w3). The generated code sometimes

causes runtime errors due to an attempt to use libraries that are
not imported, references to invalid columns names, or incorrect
handling of undefined or NaN values. When such errors occur, Df2
tries to correct the errors by querying the LLM with the error mes-
sage and a follow-up instruction to repair its mistakes [9, 38]. The
visualization is generated when repair completes. Df2 updates the
data threads upon creating the chart.

3.2 Data threads

Data threads visualize the analyst’s interaction history with AI,
allowing the analyst to control the iteration direction by selecting
which data or chart the AI model should use to generate new charts.
In data threads, each node represents a version of the data, and these
nodes are connected by edges that represent the user’s instructions
provided to the AI model for data transformation. Visualizations
are attached to the data from which they were created. Centering

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

Figure 8: Data threads and local data threads (right). Users can select previous data or charts to create new branches, and the AI

reuses code for new transformations based on user instructions. The local data thread offers shortcuts to (1) rerun the previous

instruction, (2) issue a follow-up instruction, or (3) expand the previous card to revise and rerun the instruction.

the iteration history around data benefits user navigation because
it reflects the sequence of user actions in creating these new data.

When a user issues a follow-up instruction from an existing data
or chart, Df2 provides the previous conversation history to the
AI and instructs it to rewrite the code towards new goals. Each
time the user forks a new branch using data threads, the authoring
context switches automatically and is highlighted in the main panel
for the user’s awareness. This way, the AI model minimizes the
risk of incorrectly using information from other branches for data
transformation. As shown in Figure 8, the code and the conversation
history are attached to each data node. In our design, when the
user issues a follow-up instruction, the AI model generates new
code by updating the previous code (which may involve additions,
deletions, or both) to achieve the user’s goal. This ensures that the
code always takes the original data as the input, with all information
accessible. This way, whether the user wants to update the data
(e.g., “now, calculate the average rank for each country”), revise
the previous computation (e.g., “also consider nuclear as renewable
energy”) or create alternatives (e.g., “rank by CO2 instead”), the
AI model can achieve these tasks as it has access to the full dialog
history and the complete dataset. Note that an alternative design
where we only pass current data to the AI model and ask it to
write a new code to further transform it (i.e., reusing the data as
opposed to reusing the computation leading to the data) would not
be ideal. With access to only the current data, this approach cannot
handle “backtracking” or “generating an alternative design” styles
of instructions effectively.

During iteration, analysts need to both (1) switch to different data
or a chart far from the current one to explore a different direction
and (2) perform quick follow-ups or revisions of the latest instruc-
tion based on the latest data. To accommodate these different needs,

Df2 presents both global data threads and local data threads. For
global navigation, the key challenge is to help the user distinguish
the desired content from others. To address this, data threads are
located in a separate panel with previews of data, instructions, and
charts to assist navigation (Figure 3). This supports users’ differing
navigation styles, whether they want to navigate by provenance
(i.e., using instruction cards to locate desired data) or by artifacts
(i.e., using visualization snapshots to recall data semantics). Once
the user locates the desired data, they can click and open a previous
chart, displaying it in the main panel. Additionally, they can cre-
ate a new chart directly from the data Figure 8- w1 . In contrast, the
local data thread is designed as part of the main authoring panel
(Figure 3). It features a much-simplified view (i.e., hiding other vi-
sualizations created in this thread) to display a copy of the current
thread in use. The main goals of the local data thread are to provide
users with awareness of the current iteration context (so they don’t
need to cross-reference between the chart builder and the data
threads panels) and to offer shortcuts for quick revisions of recently
created charts. As shown in Figure 8, the user can perform three
types of revision tasks with local data threads: rerun the previous
instruction (e.g., when the AI produces an incorrect result and they
would like to quickly retry, w2), provide a follow-up instruction to
refine the data (w3), and quickly open the previous instruction to
modify and rerun the command (w4).
3.3 Assisting user to inspect and style charts

As an AI-powered tool, Df2 allows users to verify AI-generated
results and resolve AI’s mistakes. It displays the transformed data
and the visualization in the main panel and enables users to inspect
generated code, its explanation, and the raw chat history through

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 9: Df2 provides explanations of the code generated by AI to assist users understand the data transformation. This

example is the explanation of the code behind table-56 in Figure 8.

pop-up windows (Figure 3). This design accommodates various user
verification styles [14, 57] such as viewing high-level correctness
from the chart, inspecting corner cases in the data, examining
the transformation output, and understanding the transformation
process through the code.Df2 utilizes a code explanation module to
help users understand the code, querying the AI model to translate
code into step-by-step explanations. Figure 9 shows the explanation
for the code behind table-56 in Figure 8. Expert users whowould like
to directly view the raw chat history betweenDf2 and the AI model
(e.g., to inspect the LLM’s raw reasoning process) can access this
information from the “view chat history” pop-up window. Note that
despite that data transformations generated in the later iteration
stages can be complex, users can verify its correctness against its
predecessor because Df2 users create visualizations incrementally.
This lowers users’ verification efforts, as found in our study in
Section 4. To fix errors, users can take advantage of the data thread’s
iterative mechanism to rerun, follow up, or revise instructions.

Benefiting from the decoupled chart specification and data trans-
formation processes, when users want to update visualization styles
(e.g., change color scheme, change sort order of an axis, or swap
encodings) that do not require additional data transformation, they
can directly perform edits in the chart builder. By updating channel
properties or swapping encoded fields, these updates are directly
reflected in the Vega-Lite script and rendered in the main panel.
Unlike interactions with AI, which may have a slightly delayed
response time, this approach allows users to achieve quick and
precise edits with immediate visual feedback to refine the design.

3.4 Implementation

Df2 is a React application with a python server for data transforma-
tion. Df2 has been tested with OpenAI models including GPT-3.5-
turbo, GPT-4, GPT-4o, and GPT-4o-mini. We used GPT-3.5-turbo
in our user study, and all but GPT-4 can generally response within
10 seconds. Df2 can sometimes be slow due to Vega-Lite rendering
overhead (e.g., large datasets with more than 20,000 rows, long data
threads with more than 20 charts). We envision that on-demand
re-rendering of charts can improve its performance.

4 User Study Design

To understand potential benefits and usability issues of Df2, as
well as users’ interaction styles, we designed a user study that

Figure 10: Participants’ self-reported roles, expertise in chart

creation, data transformation, programming, and AI assis-

tants (1=novice, 4=expert), task completion time, and hints

needed during study tasks.

asks participants to reproduce exploratory data analysis sessions
involving iteratively creating visualizations.
Participants. After piloting and refining the study design with
three volunteers, we recruited eight participants from a large com-
pany. Participants self-rated their skills (Figure 10) on a scale of 1 to
4 (“Novice,” “Intermediate,” “Proficient,” and “Expert”) in: (1) chart
creation – experience with chart authoring tools or libraries, (2) data
transformation – experience with data transformation tools and
library expertise, (3) programming, and (4) AI assistants – experi-
ence with large language models (e.g., ChatGPT [1]) and prompting.

Setup and procedure. Each study session, conducted remotely
with screen sharing, consisted of four sections within a 2-hour slot.
After introduction, participants followed step-by-step instructions
in the tutorial slides (∼25 minutes). Participants then completed a
practice task with the option to ask questions (∼15 minutes) to test
their understanding. Next, participants completed two study tasks,
with only clarification questions allowed – we recorded hints they
requested. The two study tasks involved creating 16 visualizations,
12 requiring data transformation. Participants were encouraged
to think aloud. We concluded with a debriefing to (1) compare
participants’ Df2 experiences with other tools, (2) understand their
strategies using Df2, and (3) gather impressions and suggestions
for improvements. Breaks between phases were encouraged.
Tutorial and practice tasks.We used the global energy dataset
(described in Section 2) for the tutorial and practice tasks. In the

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

tutorial, participants followed detailed instructions to recreate the
six visualizations from Figure 2 (all but chart w4). In addition, par-
ticipants also learned to inspect results and work with the AI’s
mistakes. In the practice tasks, participants were asked to do simi-
lar analyses but focusing on the electricity from nuclear power, they
were further asked to create a bar chart to visualize the difference
of energy produced from nuclear power between 2000 and 2020 for
each country.
Study tasks. To focus on participants’ iterative chart creation pro-
cesses, rather than their ability to create a single chart or derive
insights from exploration, we used an exploration session repro-
duction approach. Participants were asked to reproduce two data
exploration sessions conducted by an experienced data scientist.
We wanted to see if participants could iteratively create charts with
Df2, without requiring them to come up with exploration objec-
tives on the fly (otherwise we would limit our participants to highly
skilled data scientists). We used two exploration sessions from
David Robinson’s live stream analysis of Tidy Tuesday datasets.

Figure 11- w1 shows the first data exploration session: given a
dataset on college majors and income data (173 rows × 7 columns),
participants were asked to create seven visualizations: two basic
charts and five requiring data transformation. These visualizations
progressively explored the top-earning majors and the relationship
between gender ratio and major salary. The process required par-
ticipants to derive new fields (e.g., gender ratio), filter data (e.g.,
top 20 earning majors), derive new data (e.g., derive top earning
major categories), and perform conditional formatting (e.g., color
by top 4 categories and "others"). We provided a task description
and reference chart (like chart reproduction studies in [44, 46]) for
all but the last two visualizations. Without reference charts for
the final two, we asked participants to verify correctness, probing
their verification strategies. We did not provide iteration directions,
letting participants develop iteration techniques.

Figure 11- w2 shows the second data exploration session: given
a movie dataset with budget and gross information (3281 rows ×
8 columns), participants created nine visualizations. These visual-
izations explored movies and genres with the highest return on
investment, comparing profit and profit ratios. Besides two basic
box plots showing budget and worldwide gross distribution, the
other seven charts required data transformation, including calcula-
tion and aggregation (average profit and profit ratio for each genre),
string processing (extract year for trends), filtering (year > 2000),
and partitioning and ranking (top 20 movies for each metric). We
hid references for the final two charts to probe participants’ verifi-
cation process. In the following, we use “chart-C𝑘” and “chart-M𝑘”
to refer to the 𝑘-th target charts in Figure 11 for the college and
movies datasets, respectively.

5 User Study Results

Here we report user study findings including users’ task completion
statistics as well as their prompting, iteration and verification styles.
We highlight user quotes and example prompts in this section.
Task completion. All participants successfully completed all 16
visualizations (Figure 10): participants took less than 20 mins on
average to finish the seven charts in task 1, and about 33 mins for
the nine charts in task 2. Since we let participants deviate from

the main exploration task (e.g., in task 2, P4 asked to sort the bar
chart for top profitable movies even though it was not required), the
recorded completion time is an overestimate of the actual task time.
During the study, six participants asked for hints to get unstuck
during tasks; we categorize them as follows:

• Task clarification: P1 didn’t realize that topmovies were restricted
tomovies after 2000; P4 and P6 required hints about the difference
between profit and profit ratio in task 2; P6 asked about whether
the 𝑥-axis should be Year or Date for movie profit trends.

• Data clarification: P6 an P8 were prompted to notice the differ-
ence between fields Major and Major Category in task 1.

• System performance: P5 encountered a performance issue when
they created large sized charts. Tn task 2, P5 created multiple bar
charts with Movie mapped to the 𝑥-axis, resulting in bar charts
containing 1300 categorical values. They were advised to reset
the exploration session and resume tasks.

• Chart encoding: P7 and P8 required hints on “why the chart
didn’t render color legends” when they didn’t put a field in the
color encoding; they expected to specify it only in NL input but
not in the concept encoding shelf. 2

During the debriefing, participants commented that these tasks
would be much more difficult to complete with tools they are fa-
miliar with. P1, a programming expert, mentioned that they were
“obviously much faster” with Df2 as it helped with data transfor-
mations. When asked about their experience comparing against
chat-based AI assistants, participants noted (1) the iteration support
makes it easier to create more charts and (2) the UI + NL approach
in Df2 is more effective for communicating intent structurally. For
example, P2 mentioned “with ChatGPT, I would have to put a bit
more effort to specify the instructions to get what I want, iterations
here is much faster with UI.” P4 mentioned that “with ChatGPT, you
need to give much more context, I need to describe in detail about what
x,y-axes should be, but here I can just provide with UI,” and further
commented that UI + NL “helped me in framing and structuring the
different transformations that we need to do to get to that end result.”

Iteration styles. Participants developed their own iteration styles
working with Df2–Figure 12 illustrates their organization of data
threads in their workspaces upon completing the study tasks. Al-
though our participant pool of 8 did not encompass all possible
users’ data exploration styles with Df2, we observed surprising
behavior clusters and distinct approach differences. We characterize
participants’ iteration styles based on their preferences between
“wider” versus “deeper” tree structures, “backtrack and revise” ver-
sus “follow up” for providing new instructions to the AI, as well as
their preferences for including intermediate tables in their threads.

(Wide versus deep tree organizations): From the high-level organi-
zation of data threads, one group of participants (P1, P3, P5, P7,
P8) preferred to branch out more often with shorter data threads
than the other group (P2, P4, P6), who preferred to create fewer but
longer data threads instead. P1 explained that their preference of
more branches with shorter data threads came from their coding
style of “creating as many as transformation as I can from one single

2In the study version, Df2 didn’t include the feature of resolving conflicts between
the users’ NL and encoding shelf inputs. This feature was introduced later.

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 11: The dataset and tasks in our user study. (1) Dataset 1: Understanding top earning majors and the relation between

salary and women percentage. (2) Dataset 2: Exploring movie genres with best return-on-investment values (profit vs. profit

ratio) and top movies. The branching directions are added for illustration; participants developed their own iteration strategies.

We refer to these target charts as C1-7 for the college dataset and M1-9 for the movies dataset.

table without generating derived tables” to keep the system’s mem-
ory usage minimal and keep the workspace “terse.” On the other
hand, P2, who preferred longer data threads, mentioned “I definitely
like to be able to just work on top of that and like going forward by
just giving a new prompt, because it remembers the context prior to
the last one. It ends up generating the right data and visualization.”
P2 further commented that “going back created too much branching”
and they preferred to use longer threads to just provide updates for
“smooth train of thoughts.” To effectively work with long threads,
P4 organized their exploration process thoughtfully, as they were
“using the prompts as my anchor, so, when I wanted to figure out
where I wanted to go, it was the prompts that I was looking for.”

(Backtracking versus following-up):We observed interesting patterns
in participants’ preferences when creating new charts or correcting
unexpected results: some preferred revising previous instructions

(evident from workflows with more self-loop arrows), while others
favored following up (characterized by more forward arrows and
intermediate gray data nodes). The first group, represented by P1,
P2 and P3, preferred to go back and re-issue prompts, either to
enrich the previous data to support multiple target visualizations
(indicated by yellow nodes with multiple target charts), or to update
the data to correct unexpected results. For example, when P1 and
P3 worked on coloring the top 20 earning majors with their major
categories (chart-C4 in Figure 11), they revised the previous prompt
(“show only top 20 majors based on median salary” → “show only
top 20 majors based on median salary, include major category” by P1)
to include Major_Category so that both old and the new charts can
be created from the same data. To correct a mistake they made in
creating chart-M7 (they forgot to instruct the AI to show only top 20

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

P1 P2 P3

5,6

7

3,4x2

1,2

P4

4

5

6

3

1,2

7

P7P6P5

x2

4

5

6

3

1,2

7

5,6

7

3,4

1,2

college

7

4

3

1,2

5,6

P8

movies

9

4

3

1,2

8

5

6

7

4 5

6

3

1,2

7

5

6

7

3

1,2

4

8

5

6

7

9

9

3

1,2

4 5

6

8

7

4 5
3

1,2

6

7

8

9

5

6

4
3

1,2

9

8

7

3

1,2

4

5

6

7

8

9

8

x2

4

3

1,2

5,6

7

x2

57
9

8

6

5

3

1,2

4

7

6

5

4

3

1,2

reset

5

6

7

9

68

3

1,2

4

Figure 12: Participants’ workflow for study tasks in Figure 11 (C1-7 for college, M1-9 for movie). Each node represents a

data table version, with blue for initial datasets, yellow for data tables instantiating (one or multiple) target visualizations

in Figure 11 (number 𝑖 in the node indicate the 𝑖-th target visualizations for the given dataset), and gray for others. Self-loop

arrows indicate prompt revisions and data table updates (‘×2’ indicates two revisions).

movies), P3 chose to go back and revise their previous prompt (“cal-
culate the profit ratio per movie (worldwide_gross/budget) after 2000”
→ “calculate the profit ratio per movie (worldwide_gross/budget)
after 2000 and display the top 20 higher profit ratio movies”). P1
commented that “I don’t like to pollute my workspace” and “I like
to keep my workspace as clean as possible.” P3 mentioned that their
preference of revision came from the concept of building a “global
expanded dataset” so that “[when I] need to calculate the new thing
or see a new visual I can come back to the new expanded data set.”

On the other hand, another group, represented by P4, P5, P6,
and P7, preferred not only to issue follow-up instructions for new
charts but also to provide updates with very brief instructions at
each step, creating many intermediate nodes along the way (gray
nodes in Figure 12). For example, P5 created chart-M7 (top movies
with highest profit ratio colored by genre) in five steps: “filter movies
after year 2000” → “show top 5 highest profit ratio” → “bring back
movie” (i.e., the Movie field) → “show top 10” → “calculate profit
ratio,” creating four intermediate nodes. P5 noted that “probably
redoing would make sense, but if I can think that I can build on top of
that, there is no value for me to go back and start from that, [which]
kind of nullify these things [I have done],” as they preferred to keep
their work around. P6 mentioned that they adapt their iteration
style based on the type of mistakes they encountered: “if it is some-
thing intermediate where I’ve made the mistake, I’ll go [create a new
instruction] and fix the previous step” but when it “is a totally new

kind of visualization I have in my mind” or “if it is something I missed
altogether, I will just cancel the whole thing and start from scratch.”

(Choices of data to iterate on): Participants had different strategies
deciding which previous data/charts to use to create new charts.
P1 chose to derive the new chart from a previous chart that shares
similar visual design. For example, P1 created chart-M9 from M7
since they are both bar charts showing top ranked movies, despite
one is based on profit while another is based on profit ratio. In a
different fashion, P2, P4 and P5 often branch out based on similarity
of computations used. For example, P2 created chart-M7 about
movies with highest profit ratio based on chart-M6 showing profit
ratio trends for each genre over time, as they shared the same
computation “profit ratio.” P2 explained their data-centric approach
was because they “prefer to have more control over the data as op-
posed to the chart later on.” They also appreciated that Df2 “sort of
brings together both data-centric and chart-centric people.”
Prompt styles. Prompts created by participants are all short (less
than 20 words). We observed that participants created diverse styles
of prompts, both in terms of how they phrase the instruction (e.g.,
question, command) and the subject they asked (e.g., describing
expected visual output or output data property, providing compu-
tation formula). The most common style of prompts is imperative
commands, that either describe the transformation to be conducted
or the property of the desired output. For example, to filter top
earning movies, participants used prompts “show only top 20” [P6]
and“filter top 10 movies based on median profit” [P5]. Participants

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

also used command-style prompts for describing computations (e.g.,
“calculate ratio of worldwide_gross by production_budget” [P5]) and
for visual updates (e.g., “color by major category” [P8]. We also ob-
served that some participants prompted with questions (e.g., “can
you show only the top 5 countries in terms of increases?” [P7]), or
prompted in a chat style (e.g., “Good. We need to now find the Median
profit ratio each year for each genre” [P2].

One participant, P5, had a distinct prompting style, that directly
asked the AI to add, mutate, or retrieve columns on top of the pre-
vious data. For example, P5 asked “bring back major category” to
create chart-C4 from C3, “divide by 100,000” for updating profit
units, “bring back release_date” before they used a follow-up com-
mand “show only year greater than 2,000” to filter movies by date.
P7 preferred to use more verbose prompts to reiterate the com-
putation they intended to achieve whenever they mentioned the
concept. For example, to ensure that the AI would not interpret
the computation differently, they copy/pasted the formula to the
prompt whenever they mentioned profit ratio — “median profit
ratio (worldwide_gross/production_budget) by year and by genre.”
P6, on the other hand, preferred to use no additional prompts and
provided more descriptive field names. For example, to create chart-
C5, they mapped “percentage_of_women_of_Total_Men_and Women” to
𝑥-axis, Median_Salary to 𝑦, and provided no prompt in the input box.
In fact, we observed that Df2 can reliably transform data with self-
explanatory field names (e.g., “renewable energy percentage”, “women

percentage”, and “difference between 2020 and 2000”) without any ad-
ditional prompts. Some participants’ preference for using shorter
names and additional (short) prompts was “to minimize the error
space [for AI]” [P7].

Verification. To proceed through iterative exploration, or repeat/-
correct a step, participants needed to understand the chart and
verify that the transformation was performed correctly. Most of
the time, participants spotted unintended output easily through
incorrect patterns in rendered visualizations. This happened espe-
cially when there were differences in visual encoding (e.g., when P5
incorrectly mapped release_date to the 𝑥-axis instead of year on chart-
M5), cardinality (e.g., when P6 incorrectly asked the AI to color the
bars by major instead of major_category for chart-C6), or high-level
patterns (e.g., when P7 requested women versus median_salary for
chart-C7, leading to results based on the count of women instead
of the percentage). When the transformation is straightforward,
participants visually inspected the chart and data to verify cor-
rectness. For example, after P3 asked “filter the year after 2000” to
show only profit ratio trends for movies after 2000 (chart-M8), they
checked the 𝑥-axis domain and compared the generated chart with
the pre-filtered one. Similarly, after P2 input “filter results to top
20 by major” to find the highest earning majors (chart-C5), they
referred to the previous chart with all of the majors’ median salary

sorted to check filtering correctness.
To check whether unobvious computations were done correctly

(e.g., whether the LLM computed profit ratio correctly), different
participants’ background impacted how they validated the results:
participants either referred to (1) explanations of the code, (2) the
actual code (even if they are non-python programmers), or (3) values
in the result table to check correctness. P3 mentioned “as an expert,
I like to see the prompt to the model, and then the code generated;

but as a business user, I would imagine using more data, chart, and
explanations.” while P4 commented “[explanation] steps were really,
really helpful in terms of figuring out whether it is doing the right
thing as to what I’m asking it to do. That and also the data chart
underneath.” P7 noted that, for trust, the definition of a new field
is more crucial than the actual code: “I just want to make sure that
definition, like profit ratio, when I check in, I only look at those defini-
tions if they are correct. I’m less worried about the real coding piece.”
Thus, they use code explanations frequently to check definitions.
Meanwhile, P7 stated that they felt some pressure from the study
environment not to spend too much time understanding code for
which they were not familiar with, but they would trust code more.
We also observed participants who developed trust in a workflow
(by examining code and data tables) when it was straightforward,
and then, they assumed the more complicated transformations built
on top of these steps worked.
Additional Feedback. Several users noted potential improvements
of Df2. P1 commented on how small interface variations might
give different affordances. For instance, “if there was a large view for
data threads, it would encourage me to do more transformations and
do more branching.” P3 mentioned that they prefer the AI to ask the
user to disambiguate when the intent is unclear rather than trying
to solve the task with unclear specification. P7 used instructions
that were very detailed and sometimes incorrect, which in turn,
made iteration more difficult, since it was difficult to incrementally
modify these instructions. We discussed the potential of having
templates or AI feedback for instruction crafting to reduce errors.

6 Discussion and Future Work

Supporting recommendations in exploratory analysis. Df2
focuses on visualization authoring, where an AI completes tasks
needed to achieve a user’s intended action.We envision thatDf2 can
be enhanced with recommendation capabilities like Voyager [65],
Draco [35], and Lux [25] for suggesting visualization goals to help
users “cold start” their analysis. Df2’s designs can benefit user ex-
periences with visualization recommendation tools in two ways.
First, because Df2 supports visualization beyond initial data for-
mats, it overcomes the limitation of most existing tools, which
only consider fields in the input table for recommendation. Second,
Df2’s data threads provide a natural way for users to follow up the
system’s initial recommendations, either to dive deeper into an ex-
ploration direction, revising suggested charts, or to ask for different
recommendations. To achieve this, we can add a recommendation
component that can suggest a list of fields to be explored and let
Df2 prepare data to surface the fields and create visualizations. The
initial recommendation of the fields of interests can be generated ei-
ther automatically from the analysis of input data characteristics or
in a mixed-initiative approach, i.e., leveraging AI to generate them
using a high-level natural language instruction provided by the
user — these fields do not have to be fields in input data, as Df2 can
transform the data to derive them from existing ones. While Df2’s
data transformation ability can extend the visualization exploration
space, thus bringing in more potential insights to be discovered, it
also increases the chances of suggesting field combinations that
are either trivial, distracting, or even biased. Therefore, as part of
future work, it would be valuable to explore ways to support visual

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

recommendation in a larger exploration space, especially manag-
ing and communicating exploration paths to the user to prevent
unintentional bias towards an undesired direction.
Coordinating data transformation and chart editing. Df2
derives new data based on users’ inputs to instantiate the chart
design, but it does not modify the chart itself (represented as a
Vega-Lite specification). When the user wants to refine the chart
design (e.g., updating color scheme or 𝑥-axis ordering), they edit
it through GUI widgets in the encoding panel after the chart is
created. This design leverages the natural and precise nature of UI
updates, providing immediate visual feedback [55]. It also utilizes
current models’ strengths in data transformation for more reliable
outputs [12, 24]. In contrast, current models perform less effectively
in editing charts or generating charts from data based on NL in-
structions, even when the data is prepared [6]. Despite this, some
participants in the user study showed interest in asking Df2 to
perform chart edits within the chart builder alongside data transfor-
mation. A potential solution is an agent-based system [66, 71] that
plans whether to transform data, edit the chart script, or both based
on user inputs, and dispatches agents to handle these tasks. The key
challenge is managing response time and maintaining reliability, as
AI agents often require multiple interactions to reach consensus.
Asking users to clarify ambiguous inputs. Df2 adopts a gen-
eration verification approach: AI attempts to complete the user’s
request, and the user inspects the result to provide follow-up in-
structions. This interaction loop is enhanced by Df2’s local data
thread design. There is an opportunity to make AI more proactive,
such as actively seeking clarification from users when their inputs
are ambiguous, before attempting to solve the task. This could re-
duce users’ verification and revision efforts. For example, when the
user issues an unclear request (e.g., “show top 5”), the system can
first analyze the goal, and then either present a refined goal for
confirmation (e.g., “do you mean top 5 by renewable percentage?”)
or ask the users to clarify their intent (e.g., “what criteria should be
used for ranking?”). This proactive approach could also promote
users’ trust in the AI system. It is an interesting research direction
to explore ways to prompt or train AI models to ask only necessary
clarification questions, preventing users from being overwhelmed
with low-level questions that might interrupt their workflow.
Study limitations. In our user study, we used the reproduction of
professional data analysts’ exploration sessions as the study tasks,
rather than asking participants to perform free explorations. This
choice was made to minimize the impact of participants’ data anal-
ysis skills on their experience with Df2, as our goal was not to
assess their exploration skills. A follow-up study, where partici-
pants perform open exploration with their own data, can further
investigate how Df2 can assist analysts with planning during ex-
ploration. In addition, as a limitation of our lab study, we could not
capture users’ longer-term learning effects. A future longitudinal
study could further investigate how users’ expectations with Df2
change over time and how this affects their specification styles and
iteration strategies.

7 Related Work

Compared to its predecessor, Data Formulator [58], Df2 has tran-
sitioned from a single-turn chart authoring tool into an iterative

visualization tool designed for data exploration. Concretely, Data
Formulator [58] is a single-turn authoring tool that leverages differ-
ent authoring paradigms for various types of data transformations.
It uses programming-by-example for table reshaping and employs
LLMs to generate code for single column derivation. However, users
may struggle with choosing the appropriate paradigm for the re-
quired transformations. Df2 unifies the interaction paradigms with
a blended UI and natural language input design, supporting itera-
tive authoring. This allows users to build new charts from previous
ones with minimal additional specification. Df2’s new interaction
approaches not only broaden the expressiveness of supported data
transformations but also reduce the users’ specification overhead.
We next illustrate related work on chart authoring, data transfor-
mation, and data exploration tools that inspired the design of Df2.

LLM-powered visualization tools. Large language models’ code
generation ability [1, 5, 29, 54] motivates the designs of new AI-
powered visualizations tools [11, 31, 53, 58] that allows users to
create visualization using high-level natural language descriptions.
For example, LIDA [10] can summarize data and use LLM to gen-
erate python code to generate visualizations. Because LLMs can
struggle in understanding complex chart logic, ChartGPT [53] de-
composes visualization tasks into fine-grained reasoning pipelines
(e.g., column selection, filtering, chart type selection, visual en-
coding), using chain-of-thoughts prompting [59]. As single-turn
interactive tools, they are not suitable for iterative analysis. For
multi-turn interactions, users can directly chat with LLMs in Code
Interpreter [1] or Chat2Vis [31]. Code Interpreter equips the LLM
with a Python interpreter so that the model can generate and exe-
cute code to transform data and create charts; Chat2Vis includes
visualization-specific prompts to help the model generate visualiza-
tions more reliably. Since these tools organize the dialog linearly,
users need to put in extra effort to clarify the context when there
are branches, to reduce the chances of models applying incorrect
contexts and making mistakes in the new task [17, 26, 70].

Df2 is also an LLM-powered tool that shares similar prompt
designs to LIDA and Chat2Vis (e.g., the use of data summaries)
and supports NL interaction. The key difference is that Df2 blends
UI and natural language inputs for chart specification, balancing
precision and flexibility, rather than requiring users to describe ev-
erything in text. Df2’s data threads generalize linear contexts used
in existing dialog systems, allowing users to control the iteration
direction by providing authoring contexts to the AI model.

Other AI and synthesis-powered tools. Besides LLM-powered
tools above, neural semantic parsing [7, 34, 36], and program
synthesis-based tools [57] have also been developed to address the
visualization challenge. For example, NL4DV [36] and NcNet [30]
leverage recurrent neural networks trained to translate NL queries
into charts. NL2Vis [67] and Graphy [7] use a semantic parser
to extract entities from the user’s NL query and apply program
synthesis algorithms to compose charts. Unlike LLMs, these tools
are more restrictive in the supported data transformations and
chart types, requiring very specific chart descriptions from the
user. While programming-by-examples (PBE) techniques are devel-
oped to tackle data reshaping challenges in chart authoring (e.g.,
Falx [57] and Data Formulator [58]’s reshaping module), users need
to prepare low-level examples to demonstrate the transformation

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

intent, which deviates users from the high-level visualization work-
flow. For disambiguation, DataTone [13] introduces disambiguation
widgets for users to experiment with different entity extraction
outputs for the generated query, and users can inspect paraphrased
queries (in NL) to resolve ambiguity; Falx [57] previews charts from
multiple versions of data consistent with user examples. Benefiting
from the use of LLMs,Df2 is more expressive. Inspired by how prior
work displays candidate results and explains code to help users
understand system outputs [13, 14, 58], Df2 displays generated
code, data, chart and code explanation to assist user inspection.

Visualization grammars and tools. The grammar of graph-
ics [64] inspired many modern visualization grammars (e.g., gg-
plot2 [61], Vega-Lite [49], Altair [56]), where visualizations are
mainly described bymappings from data columns to visual channels.
Comparing to more expressive languages like D3 [3] and Atlas [27],
high-level grammars hide the computation process of linking data
items to visual objects to reduce visualization effort. Powered by
these high-level grammars, interactive tools like Lyra [48], Data
Illustrator [28], Charticulator [45], Tableau [51]) have been intro-
duced, where users leverage the shelf-configuration interface to
specify visual encodings. To reduce authoring efforts, tools like Voy-
ager [65], Lux [25], and Draco [35] leverage rule and logic-based
recommendation techniques to suggest visualizations from users’
partial chart specifications. For example, Voyager lets users put
a wildcard field into an encoding slot, and then automatically in-
stantiates the wildcard field with different existing fields from the
table, to produce interesting charts for users to explore. Note that
these tools all require tidy input data [62], where all fields to be
visualized should be data columns. Thus, users need to learn to use
data transformation tools to prepare data [8, 18–20, 22, 40–42, 63].

Df2 benefits from Vega-Lite’s expressiveness to support rich
visualization designs. Df2 inherits the shelf-configuration design
from existing interactive tools and enhanced it with NL inputs for
users to create charts that require data transformation. While Df2’s
custom fields resemble wildcard fields in Voyager [65], they are
semantically different: a custom field is for a field that users desire
to visualize but not yet exist in the current table, requiring data
transformation to surface, while a wildcard field refers to a field
in the current table that the user does not specify explicitly. There
is potential to unify these two as “wildcard custom fields” so that
the system can recommend unspecified fields beyond the available
fields in the current data (leveraging data transformation), which
would broaden the exploration space.

Exploration history. Graphical history [16] and data prove-
nance [4] are essential in visualization authoring, especially in
exploration tasks where branching and iterations are common. In
computation notebooks, the exploration history is organized based
on code blocks [33, 37]. Data transformation tools like somnus [68]
and Tableau Prep visualize data provenance based on transfor-
mation operators. Directed-graph models [23, 50] based on visual
similarity are also used for visualization organization. To assist data
scientists manage (messy) programming histories in computation
notebooks, Verdant [21] introduces a design that visualizes users’
edit histories of notebook and artifacts, allowing them to revisit
different versions of the notebook; code gathering tools [15] lever-
age data dependency to extract a clean and minimal code snippet

from a notebook that can reproduce a variable of interest. To sup-
port the management of different versions of code snippets created
during the ideation process, Variolite [21] allows users to explicitly
create branches when experimenting different implementations of
a function and to switch among them later on.

Df2’s data threads draw inspiration from these systems. The
key difference is that data threads are designed for users to steer
iteration directions by providing authoring contexts with AI. This
approach organizes history around high-level user interactions
with AI and hides operator-level details. We characterized users’ in-
teraction strategies based on their exploration tree [60]. Provenance
management techniques for notebooks can be applied to manage
long data threads users created across different sessions (e.g., com-
pressing long data threads into shorter ones with summaries). In
the future, Df2 could render data threads as hierarchical trees [23]
to support navigation of large data threads in multiple granularities.
Additionally, it could incorporate version toggles, similar to Vario-
lite, allowing users to explore different versions of generated code
more compactly, rather than presenting all exploration branches as
separate data threads.

Multi-modal interaction. Despite natural language providing
flexible and expressive interactions between human and AI, NL-
only interaction is not always optimal for the users to clearly convey
their intent, especially for conveying designs pictured only in the
user’s mind. To address this limitation, multi-modal models like
ChatGPT [1] and Gemini [43] have been introduced, allowing users
to provide audios and images in their conversation with AI. New
interactive tools are also developed to support multi-modal inter-
action. For example, DirectGPT [32] allows users to directly point
and click on a canvas to specify contexts or objects that NL instruc-
tion is based on to reduce prompting effort, Mage [22] provides
interactive widgets for users to control content in notebook, and
DynaVis [55] generates UI widgets dynamically based on user’s NL
inputs for chart editing with LLMs so that users can explore and
repeat edits and see instant visual feedback from edits. Df2’s chart
builder bridges the precision and affordance of GUI interaction with
flexibility of NL inputs and thus exploits a multi-modal UI design
for visualization authoring.

8 Conclusion

Visualization authors often create visualizations iteratively, alter-
nating between data transformation and visualization steps. This
process requires proficiency with tools and considerable effort to
manage various versions of data and charts. Although AI-powered
tools aim to reduce user effort, they fall short for iterative analysis,
expecting users to specify their intent at once with NL inputs. We
presentDf2, an interactive system for iterative visualization author-
ing. Df2 features a multi-modal UI that allows users to specify visu-
alizations using a blend of UI and NL inputs, enabling users to con-
vey complex designs more precisely without verbose prompts. To
help user manage iteration directions, Df2 introduces data threads
for users to navigate, branch, and reuse previous designs. In a user
study with eight participants reproducing two challenging data
exploration sessions consisting of 16 visualizations, we observed
that Df2 enabled participants to develop their own iteration and
verification strategies confidently with minimal hints.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Chenglong Wang, Bongshin Lee, Steven Drucker, Dan Marshall, and Jianfeng Gao

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[3] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven
Documents. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 2301–2309. https:
//doi.org/10.1109/TVCG.2011.185

[4] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where:
A characterization of data provenance. In Database Theory—ICDT 2001: 8th In-
ternational Conference London, UK, January 4–6, 2001 Proceedings 8. Springer,
316–330.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating Large Language Models Trained on Code.
CoRR abs/2107.03374 (2021). arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[6] Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. 2024. Viseval:
A benchmark for data visualization in the era of large language models. IEEE
Transactions on Visualization and Computer Graphics (2024).

[7] Qiaochu Chen, Shankara Pailoor, Celeste Barnaby, Abby Criswell, Chenglong
Wang, Greg Durrett, and Işil Dillig. 2022. Type-directed synthesis of visualizations
from natural language queries. Proceedings of the ACM on Programming Languages
6, OOPSLA2 (2022), 532–559.

[8] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-
modal synthesis of regular expressions. In Proceedings of the 41st ACM SIGPLAN
conference on programming language design and implementation. 487–502.

[9] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[10] Victor Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-Agnostic
Visualizations and Infographics using Large Language Models. arXiv preprint
arXiv:2303.02927 (2023).

[11] Victor Dibia and Çağatay Demiralp. 2019. Data2vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33–46.

[12] Dawei Gao, HaibinWang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jin-
gren Zhou. 2023. Text-to-sql empowered by large language models: A benchmark
evaluation. arXiv preprint arXiv:2308.15363 (2023).

[13] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios.
2015. DataTone: Managing Ambiguity in Natural Language Interfaces for Data
Visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, UIST 2015, Charlotte, NC, USA, November 8-11, 2015, Celine
Latulipe, Bjoern Hartmann, and Tovi Grossman (Eds.). ACM, 489–500. https:
//doi.org/10.1145/2807442.2807478

[14] Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang, and Steven M Drucker.
2023. How Do Analysts Understand and Verify AI-Assisted Data Analyses? arXiv
preprint arXiv:2309.10947 (2023).

[15] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[16] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. 2008. Graph-
ical histories for visualization: Supporting analysis, communication, and eval-
uation. IEEE transactions on visualization and computer graphics 14, 6 (2008),
1189–1196.

[17] Cheng-PingHsieh, Simeng Sun, Samuel Kriman, ShantanuAcharya, Dima Rekesh,
Fei Jia, and Boris Ginsburg. 2024. RULER: What’s the Real Context Size of Your
Long-Context Language Models? arXiv preprint arXiv:2404.06654 (2024).

[18] Yanwei Huang, Yunfan Zhou, Ran Chen, Changhao Pan, Xinhuan Shu, Di Weng,
and Yingcai Wu. 2023. Interactive table synthesis with natural language. IEEE
Transactions on Visualization and Computer Graphics (2023).

[19] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V. Jagadish. 2017.
Foofah: Transforming Data By Example. In SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang,
and Dan Suciu (Eds.). ACM, 683–698. https://doi.org/10.1145/3035918.3064034

[20] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI). 3363–3372.
https://doi.org/10.1145/1978942.1979444

[21] Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453–3025626.

[22] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. Mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 140–151.

https://doi.org/10.1145/3379337.3415842
[23] Younghoon Kim, Kanit Wongsuphasawat, Jessica Hullman, and Jeffrey Heer. 2017.

Graphscape: A model for automated reasoning about visualization similarity
and sequencing. In Proceedings of the 2017 CHI conference on human factors in
computing systems. 2628–2638.

[24] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Wen-tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-1000: A
natural and reliable benchmark for data science code generation. In International
Conference on Machine Learning. PMLR, 18319–18345.

[25] Doris Jung Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommendations
for Exploratory Dataframe Workflows. Proc. VLDB Endow. 15, 3 (2021), 727–738.
https://doi.org/10.14778/3494124.3494151

[26] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the middle: How language models
use long contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173.

[27] Zhicheng Liu, Chen Chen, Francisco Morales, and Yishan Zhao. 2021. Atlas:
Grammar-based Procedural Generation of Data Visualizations. In 2021 IEEE
Visualization Conference, 2021 - Short Papers, New Orleans, LA, USA, October 24-29,
2021. IEEE, 171–175. https://doi.org/10.1109/VIS49827.2021.9623315

[28] Zhicheng Liu, John Thompson, AlanWilson,Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring.
In Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI). 123:1–13. https://doi.org/10.1145/3173574.3173697

[29] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next generation. arXiv preprint
arXiv:2402.19173 (2024).

[30] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin.
2022. Natural Language to Visualization by Neural Machine Translation. IEEE
Trans. Vis. Comput. Graph. 28, 1 (2022), 217–226. https://doi.org/10.1109/TVCG.
2021.3114848

[31] Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Generating data visualisations
via natural language using chatgpt, codex and gpt-3 large language models. Ieee
Access (2023).

[32] Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2024. Direct-
gpt: A direct manipulation interface to interact with large language models. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–16.

[33] Andrew M McNutt, Chenglong Wang, Robert A Deline, and Steven M Drucker.
2023. On the design of ai-powered code assistants for notebooks. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–16.

[34] Rishab Mitra, Arpit Narechania, Alex Endert, and John Stasko. 2022. Facilitating
conversational interaction in natural language interfaces for visualization. In
2022 IEEE Visualization and Visual Analytics (VIS). IEEE, 6–10.

[35] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith,
Bill Howe, and Jeffrey Heer. 2019. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco. IEEE Trans. Vis. Comput.
Graph. 25, 1 (2019), 438–448. https://doi.org/10.1109/TVCG.2018.2865240

[36] Arpit Narechania, Arjun Srinivasan, and John T. Stasko. 2021. NL4DV: A
Toolkit for Generating Analytic Specifications for Data Visualization from Nat-
ural Language Queries. IEEE Trans. Vis. Comput. Graph. 27, 2 (2021), 369–379.
https://doi.org/10.1109/TVCG.2020.3030378

[37] Observable. [n. d.]. https://observablehq.com/.
[38] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and

Armando Solar-Lezama. 2023. Is Self-Repair a Silver Bullet for Code Generation?.
In The Twelfth International Conference on Learning Representations.

[39] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, and
Sam Altman et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
https://arxiv.org/abs/2303.08774

[40] The pandas development team. 2023. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.7741580

[41] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for
inductive program synthesis. In Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2015, Pittsburgh, PA, USA, October 25-30,
2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 107–126. https:
//doi.org/10.1145/2814270.2814310

[42] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An In-
teractive Data Cleaning System. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Pe-
ter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ra-
mamohanarao, and Richard T. Snodgrass (Eds.). Morgan Kaufmann, 381–390.
http://www.vldb.org/conf/2001/P381.pdf

[43] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy
Lillicrap, Jean-baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat,

https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2020.3030378
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.5281/zenodo.7741580
https://doi.org/10.5281/zenodo.7741580
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
http://www.vldb.org/conf/2001/P381.pdf

Data Formulator 2: Iterative Creation of Data Visualizations, with AI Transforming Data Along the Way CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Julian Schrittwieser, et al. 2024. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530 (2024).

[44] Donghao Ren, Matthew Brehmer, Bongshin Lee, Tobias Höllerer, and Eun Kyoung
Choe. 2017. Chartaccent: Annotation for data-driven storytelling. In 2017 IEEE
Pacific Visualization Symposium (PacificVis). Ieee, 230–239.

[45] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2019. Charticulator: Inter-
active Construction of Bespoke Chart Layouts. IEEE Trans. Vis. Comput. Graph.
(Proceedings of InfoVis) 25, 1 (2019). https://doi.org/10.1109/TVCG.2018.2865158

[46] Donghao Ren, Bongshin Lee, Matthew Brehmer, and Nathalie Henry Riche. 2018.
Reflecting on the Evaluation of Visualization Authoring Systems : Position Paper.
In 2018 IEEE Evaluation and Beyond - Methodological Approaches for Visualization,
BELIV 2018, Berlin, Germany, October 21, 2018, Michael Sedlmair, Petra Isenberg,
Miriah Meyer, and Tobias Isenberg (Eds.). IEEE Computer Society, 86–92. https:
//doi.org/10.1109/BELIV.2018.8634297

[47] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–12.

[48] A. Satyanarayan and J. Heer. 2014. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proceedings of EuroVis) 33, 3 (2014).
https://doi.org/10.1111/cgf.12391

[49] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A grammar of interactive graphics. IEEE Transactions on Visu-
alization and Computer Graphics (Proceedings of InfoVis) 23, 1 (2017), 341–350.
https://doi.org/10.1109/TVCG.2016.2599030

[50] Danqing Shi, Yang Shi, Xinyue Xu, Nan Chen, Siwei Fu, Hongjin Wu, and Nan
Cao. 2019. Task-oriented optimal sequencing of visualization charts. In 2019 IEEE
Visualization in Data Science (VDS). IEEE, 58–66.

[51] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Query, analysis, and visu-
alization of hierarchically structured data using Polaris. In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, July 23-26, 2002, Edmonton, Alberta, Canada. ACM, 112–122. https:
//doi.org/10.1145/775047.775064

[52] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The Metacognitive Demands and
Opportunities of Generative AI. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI 2024, Honolulu, HI, USA, May 11-16, 2024,
Florian ’Floyd’ Mueller, Penny Kyburz, Julie R. Williamson, Corina Sas, Max L.
Wilson, Phoebe O. Toups Dugas, and Irina Shklovski (Eds.). ACM, 680:1–680:24.
https://doi.org/10.1145/3613904.3642902

[53] Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong Zhang,
and Yingcai Wu. 2024. Chartgpt: Leveraging llms to generate charts from abstract
natural language. IEEE Transactions on Visualization and Computer Graphics
(2024).

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[55] Priyan Vaithilingam, Elena L Glassman, Jeevana Priya Inala, and Chenglong
Wang. 2024. DynaVis: Dynamically Synthesized UI Widgets for Visualization
Editing. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–17.

[56] Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wong-
suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and
Scott Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. J.
Open Source Softw. 3, 32, 1057. https://doi.org/10.21105/joss.01057

[57] Chenglong Wang, Yu Feng, Rastislav Bodík, Isil Dillig, Alvin Cheung, and Amy J.
Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In CHI ’21: CHI
Conference on Human Factors in Computing Systems, Virtual Event / Yokohama,
Japan, May 8-13, 2021, Yoshifumi Kitamura, Aaron Quigley, Katherine Isbister,
Takeo Igarashi, Pernille Bjørn, and Steven Mark Drucker (Eds.). ACM, 106:1–
106:15. https://doi.org/10.1145/3411764.3445249

[58] Chenglong Wang, John Thompson, and Bongshin Lee. 2023. Data Formula-
tor: Ai-powered concept-driven visualization authoring. IEEE Transactions on
Visualization and Computer Graphics (2023).

[59] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[60] Ryen W White and Steven M Drucker. 2007. Investigating behavioral variability
in web search. In Proceedings of the 16th international conference on World Wide
Web. 21–30.

[61] Hadley Wickham. 2009. ggplot2 - Elegant Graphics for Data Analysis. Springer.
https://doi.org/10.1007/978-0-387-98141-3

[62] Hadley Wickham. 2014. Tidy data. The Journal of Statistical Software 59 (2014).
Issue 10. http://www.jstatsoft.org/v59/i10/

[63] HadleyWickham,Mara Averick, Jennifer Bryan,Winston Chang, LucyMcGowan,
Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max
Kuhn, Thomas Pedersen, Evan Miller, Stephan Bache, Kirill Müller, Jeroen Ooms,

David Robinson, Dana Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan,
Claus Wilke, Kara Woo, and Hiroaki Yutani. 2019. Welcome to the tidyverse. J.
Open Source Softw. 4, 43 (Nov. 2019), 1686. https://doi.org/10.21105/joss.01686

[64] Leland Wilkinson. 2005. The Grammar of Graphics, Second Edition. Springer.
[65] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,

Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager
2: Augmenting Visual Analysis with Partial View Specifications. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 2648–2659. https://doi.org/10.1145/3025453.3025768

[66] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. Autogen: Enabling
next-gen llm applications via multi-agent conversation framework. arXiv preprint
arXiv:2308.08155 (2023).

[67] Zhengkai Wu, Vu Le, Ashish Tiwari, Sumit Gulwani, Arjun Radhakrishna, Ivan
Radiček, Gustavo Soares, Xinyu Wang, Zhenwen Li, and Tao Xie. 2022. NL2Viz:
natural language to visualization via constrained syntax-guided synthesis. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 972–983.

[68] Kai Xiong, Siwei Fu, GuomingDing, Zhongsu Luo, Rong Yu,Wei Chen, Hujun Bao,
and Yingcai Wu. 2022. Visualizing the scripts of data wrangling with SOMNUS.
IEEE Transactions on Visualization and Computer Graphics (2022).

[69] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[70] Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao,
and Tuo Zhao. 2023. Tell your model where to attend: Post-hoc attention steering
for llms. arXiv preprint arXiv:2311.02262 (2023).

[71] Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna,
and Qingyun Wu. 2024. Training Language Model Agents without Modifying
Language Models. ICML’24 (2024).

[72] Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu,
Wenhu Chen, and Xiang Yue. 2024. OpenCodeInterpreter: Integrating Code
Generation with Execution and Refinement. arXiv preprint arXiv:2402.14658
(2024).

https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/3613904.3642902
https://doi.org/10.21105/joss.01057
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1007/978-0-387-98141-3
http://www.jstatsoft.org/v59/i10/
https://doi.org/10.21105/joss.01686
https://doi.org/10.1145/3025453.3025768

	Abstract
	1 Introduction
	2 Illustrative Scenarios
	3 System Design
	3.1 Composing charts from multi-modal inputs
	3.2 Data threads
	3.3 Assisting user to inspect and style charts
	3.4 Implementation

	4 User Study Design
	5 User Study Results
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

